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ABSTRACT 

It is shown that the ring of two 2 × 2 generic matrices over a field has infinite 
global dimension. It is also proved that there is a non-free projective module  
over that ring. Finally, the authors  show that the trace ring of that generic 
matrix ring is an iterated Ore extension from which it follows that the trace ring 
has global dimension five and that the finitely-generated projective modules are 
stably free. 

Let k be an infinite field and k{x~ . . . . .  x,} the free algebra in n variables over 

k. If I,, is the ideal of all identities of m x m matrices in n variables then 

k{xj . . . . .  x,}/I,, is called the ring of n generic m x m matrices. This ring is a 

domain of PI degree m. An often more convenient description of this ring is 

obtained by considering the polynomial ring A = k[t~j: 1 < i,j <- m, 1 <= l <= n] 
and the matrices X~ = (ttij)E Mm (A). Then k{x, . . . .  , x,}/Im is just the k-algebra 

generated by the {X~}. For these remarks and other background, the reader is 

referred to [9]. 

The generic matrix ring occupies a position of importance within PI theory 

similar to that of the free algebra and the commutative polynomial ring within 

their respective areas. However  little is known about its homological properties. 

In this paper we consider the ring R = k~2~{a, b} of two generic 2 x 2 matrices and 

prove, among other things, that R has infinite global dimension. This answers a 

question of Procesi [7]. We also produce a finitely generated, non-free projective 

R-module P that satisfies P • R -~ R • R. 
A useful tool for studying a prime PI ring is its trace ring (this is obtained by 

adjoining to the ring the coefficients of the reduced characteristic polynomial of 
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its elements, considered as elements in the quotient ring of the ring). Let T be 

the trace ring of R = k(2~{a, b}. One of our main observations is that T is an 

iterated Ore extension, from which it follows easily that T has global d imension 5, 

is a m a x i m a l  order, and all its f initely generated projective modules  are stably free. 

However, like R, T does possess non-free projective modules. 

In this paper we will not need much of the general theory of PI rings, but 

rather we will use the concrete description of R and T available in [3]. 

1. Preliminaries 

Our basic reference is [3]. Fir an infinite field k. Then throughout this note we 

use the following notation: R = k~2){a, b} is the ring of two generic 2 × 2 matrices, 

with trace ring T. Let tr and det stand for (reduced) trace and determinant, 

respectively. Write z = ab - ba, s = tr(a), t = tr(b), d = det(a), e = det(b) and 

f = tr(ab), and observe that these last five elements do indeed belong to T. 

The following facts from [3] will prove useful, and will usually be used without 

further reference. 

(1.1) 

and f. 
(1.2) 

(1.3) 
(1.4) 

(1.5) 
(1.6) 

The centre, Z(T) ,  of T is the polynomial ring in the five variables, s, t, d, e 

T is a free Z(T)-module,  with basis 1, a, b, ab. 

d =  - a 2 + s a  and e = - b 2 + t b .  

z 2 = [ 2 _  s t f  + s2e + t2d - 4de ~ Z ( T ) .  

za  = - az  + sz and zb = - bz + tz. 

f = ba + ab + s t -  ta - sb. 

2. Ore extensions and the trace ring 

Let A be a ring, o- an automorphism of A and 6 a ~r-derivation (that is, 

6(rs) = r ~ ( s ) + 6 ( r ) s  ~ for all r,s  E A ) .  Then the Ore extension A[x ;  o-, 6] of A 

is the ring which, additively, is isomorphic to the polynomial ring A [x ] but with 

multipfication defined by rx = xr ~ + 6 ( 0  for r ~ A. The aim of this section is to 

show that T can be realized as an iterated Ore extension. All our results 

concerning T will then follow from this result. We will use the following easy 

criterion for a ring to be an Ore extension. 

LEMMA 2.1. [1, Theorem 1, p. 438] Let  A C B be rings and x ~ B be such that  

B = A ( x ) .  Suppose that  there exist  set-theoretic homomorph i sms  ¢r and 8 o f  A ,  

such that: 

(i) o is a bijection, 

(ii) for all r ~ A ,  rx = xr  ~ + 8(r), 
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(iii) every element b E B can be uniquely written as b = E? x~a~ for some a~ E A 

and integer n. 

Then cr is an automorphism and 6 a o'-derivation of  A such that B = 

A[x;  o-, 3]. 

THEOREM 2.2. T is an iterated Ore extension. 

PROOF. By (1.1) and (1.4), R~ = k (z, s, t) is a commutative polynomial ring 

and so is certainly an iterated Ore extension. Set R2 = R~(a). Let r E R1 and 

write r = Z zi/~ for some )~ G k[s, t]. Then, by (1.5), ra = ar ~ + 6(r)  where tr, 6 

are maps such that r ~ = E ( - 1)iz'[,. Thus, only the uniqueness in condition (iii) 

of Lemma 2.1 is not obvious. Notive that k[s, t, z2] * is a central Ore set in R~ and 

the resulting localization is just V = k (s, t, z)(a) .  Now suppose that E a ~r~ = 0 for 

some r, E R~, not all of which are zero. Then V is a finite k(s,  t, z)-module. But, 

by (1.3), d E R2 and so V contains the polynomial extension k(s, t, z)[d] ;  which 

is absurd. Thus Lemma 2.1 can indeed be applied to prove that R2 is an Ore 
extension of R~. 

The observations of Section 1 show that T = R2(b).  The proof of the last 

paragraph can be easily modified to prove that T is an Ore extension, 
t 

T =  R2[b;r ,  e] of R2 and complete the proof. 

A number of properties of T are immediate consequences of Theorem 2.2, as 

we now illustrate. The global dimension of a ring A will be written gl dim A, and 

the homological dimension of an A-module M will be denoted hd M. 

COROLLARY 2.3. (i) gl dim T = 5. 

(ii) T is a max imal  order. 

(iii) T is stably free ; that is, if P is a finitely generated projective T-module ,  then 

T G  R~")-~ R ~m) for some integers n and m. 

PROOF. (i) T is a free module over Z(T) ,  which is a polynomial ring in 5 

variables. Thus, by [4], gldim T_- >5 .  The other direction follows from the 

theorem combined with [2, Remark (iii)]. 

(ii) Use [6, Proposition 2.5, p. 93]. 

(iii) This follows from the results on the K-theory of graded rings which are 

well-known hut inaccessible. See [8] and the forthcoming [5]. 

Since K dim T = 5, Corollary 2.3(iii) combined with [10] proves the following. 

If P is a finitely generated, projective T-module of uniform dimension at least 5, 

then P is free. This raises the obvious question of whether all finitely generated 

projective T-modules are free. 
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COROLLARY 2.4. Let A = R, the ring of two generic 2 × 2 matrices, or A = T, 

its trace ring. Then there exists a non-free, projective, right ideal P of A satisfying 

P ~ A ~ A ~ A .  

PROOF. Let r = l + z t  and J = b A  +rA.  Then z t 2 = r b + b ( z t - 1 ) E J .  Since 

1= r ( l - z t ) + ( z t 2 ) z ,  this implies that J = A .  Thus, from the short exact 

sequence 

O-->bA n rA-->bA O r A  ~ b A  + rA -->0, 

we see that P = b A n  rA is a projective A-module satisfying P • A ~ A 0 A. 

Thus to prove the corollary we need only show that P is not cyclic. 

Let qg = {zZ"}; so ~ is a central Ore set in both T and R. Furthermore, the 

resulting localization 

A ,  = R ,  = T ,  =(R2)~[b;  z,e] 

is still an Ore extension (here R2 is the ring constructed in the proof of Theorem 

2.2). Since P,e = bA~ O rA~, to prove that P is not cyclic, it suffices to prove that 

P~ is not cyclic. But this is now a special case of [11, Theorem 1.2]. 

We remark that R is also a stably free ring. This will appear in a forthcoming 

paper of Severino Collier Coutinho. 

3. Global dimension of generic matrices 

l'n this final section we consider the global dimension of R = k<2){a, b}. We 

begin with some elementary lemmas. Observe that z T  is an ideal of T. 

Throughout this section, - will denote the image of elements of T (or R)  in 

T =  T/zT .  By the comments of Section 1, I"= k[~,b,g, t] is a commutative 

polynomial ring in the four named indeterminates. 

LEMMA 3.1. (i) R z R  = z T  N R = z T  = E { z s i f R  : i,j > 0}. 

(ii) tT n R = tRzR.  

(iii) iT  n / ~  -- 0. 

PROOF. (i) is just [3, Lemma 2]. The other two parts follow from this and the 

fact that T is the polynomial ring T = R [g, t]. 

LEMMA 3.2. There exists a short exact sequence 

o 4, 
(*) 0 > R z R  ~ R 0 R > zR  + ztR > O. 
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PROOF. t~ is the map defined by ( f , g ) - - - ~ z f + z f g  and so K e r ~ b ~  

{ g E R : z t g E z R } .  Now, as t E Z ( T ) ,  z t R z R = z R z t R C z R .  Thus Ker~b_~ 

R z R .  The inverse inclusion is just Lemma 3.1(ii). 

LEMMA 3.3. R z R / ( z R  + z t R )  ~ ~ R / R z R ,  as a right R -modu le .  

PROOF. Suppose first that E zs it~r,j = 0 for some r,j E R. Then Y. s itJr~j = 0 and 

E g~i~j = 0 in 27 = T / z T .  But 2? = k[& b, g, t] and each ~j E / ~  = k[~i/~]. This 

forces each ~j = 0. That is, by Lemma 3.1(i) we have r~ i E z T  f3 R = R z R  for 

each i and j. 

Now return to the proof of the lemma. By Lemma 3.1(i) ( R z R ) 2 C  z R  and so 

we may consider R z R / z R  as a right R / R z R - m o d u l e .  Since R z R  = Y zs ~tJR, the 

comments of the last paragraph show that R z R / z R  is a free R / R z R - m o d u l e  

with basis {zs ~t j : i, j >- 0 with i, j not both zero}. This clearly suffices to prove the 

lemma. 

We now have all the pieces for: 

THEOREM 3.4. gi dim R = oo. 

PROOF. We will prove that h d R R / R z R  = o0. Let  hd(zR + t z R )  = n. Note that 

the short exact sequence (*) cannot be split, since R z R  is not finitely generated. 

Thus n _-> 1. So, by (*) again, h d ( R z R )  = n - 1 and hd R / R z R  = n. But Lemma 

3.3 provides a short exact sequence 

0--~ z R  + t zR  --~ R z R  --~ @ R / R z R  --~0 

in which the terms have homological dimension n, (n - 1) and n respectively. 

This is only possible if n = oo. 

There is very little known about the homological properties of generic 

matrices, beyond what has been said here. Presumably all rings of generic 

matrices have infinite global dimension, although it is possible that the finitistic 

dimension remains finite. 
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